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Abstract: Administration of 1000–1500 mg/day D-Chiro-Inositol (DCIns) or a combination of Myo-
Inositol (MyoIns) and DCIns in their plasma molar ratio (40:1) for three or more months are among
recommended treatments for metabolic syndrome and/or Polycystic Ovary Syndrome (PCOS).
We previously confirmed the efficacy of this formulation (8.2 mg/day MyoIns and 0.2 mg/day
DCIns for 10 days) in a mouse PCOS model, but also observed negative effects on ovarian histology
and function of formulations containing 0.4–1.6 mg/day DCIns. We therefore analyzed effects
of higher doses of DCIns, 5, 10 and 20 mg/day, administered to young adult female mice for
21 days, on ovarian histology, serum testosterone levels and expression of the ovarian enzyme
aromatase. Five mg/day DCIns (human correspondence: 1200 mg/day) altered ovarian histology,
increased serum testosterone levels and reduced the amount of aromatase of negative controls,
suggesting the induction of an androgenic PCOS model. In contrast, 10–20 mg/day DCIns (human
correspondence: 2400–4800 mg/day) produced ovarian lesions resembling those typical of aged mice,
and reduced serum testosterone levels without affecting aromatase amounts, suggesting a failure
in steroidogenic gonadal activity. Notwithstanding physiological/biochemical differences between
mice and humans, the observed pictures of toxicity for ovarian histology and function recommend
caution when administering DCIns to PCOS patients at high doses and/or for periods spanning
several ovulatory cycles.

Keywords: inositol; letrozole; mouse ovary; PCOS model; aromatase; testosterone; androgenic
phenotype; menopause

1. Introduction

Polycystic Ovary Syndrome (PCOS), the most common endocrine disorder in women
of reproductive age, is diagnosed by the presence of two of the following disorders:
hyperandrogenism, oligo/anovulation and polycystic ovaries, with the exclusion of other
related pathologies, according to the 2003 Rotterdam Criteria [1].

The different features and pathophysiology of PCOS, which include genetic [2] and
environmental/organic factors, such as endocrine disruptors [3], obesity and an imbal-
ance in diet composition [4], have long been approached in experimentally modeled
mammals [5,6]. Rodent models of PCOS are produced using various procedures [7,8].
For example, a hyperandrogenism-dependent PCOS-like syndrome, with a failure in fol-
liculogenesis, may be obtained by administration of androgens [9–11] or of the aromatase
inhibitor letrozole [12], which prevents the physiological conversion of androgens to estra-
diol inside the ovarian follicle. Letrozole-conditioned mice are infertile and recapitulate
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most of reproductive and metabolic aspects of PCOS [13]. Alternatively, rodents can be
modeled by exposure to a regimen of continuous light, which disrupts the normal light–
dark cycle and the circadian rhythm of melatonin, lowering peak levels of gonadotropins
and progesterone [14,15], and producing, among others, oligo-anovulation, polycystic
ovaries with hyperplastic follicular theca-cell layers [16], follicular atresia [17] and infertil-
ity [16].

Insulin resistance plays an important role in the pathophysiology of PCOS [18] and
a severe deregulation of inositol metabolism in follicle cells of PCOS patients is largely
acknowledged [19]. The two main inositol isomers, myo-inositol (MyoIns) and D-chiro-
inositol (DCIns), are precursors of inositol phosphoglycans (MyoIns-IPG and DCIns-IPG)
that act as second messengers of insulin [20–22]. A growing body of research has shown
that MyoIns and DCIns can be synergistically integrated in the clinical management of
PCOS, exerting therapeutic effects and representing a reliable alternative to conventional
treatments for insulin resistance [23–26], if combined in amounts corresponding to their
physiological plasma molar ratio of 40:1 [27,28] at doses of approximately 2g twice a
day [27].

Our group has recently confirmed the efficacy of the 40:1 MyoIns/DCIns formula-
tion in the continuous light-induced PCOS mouse model. In fact, a ten-day treatment
with 410 mg/kg/day MyoIns and 10 mg/kg/day DCIns, corresponding to 8.4 mg total
inositol/mouse/day, restored the normal ovarian histology and fertility [16]. In contrast,
formulations with MyoIns/DCIns ratios of 20:1 and 5:1, with DCIns amounts of, respec-
tively, 20 and 70 mg/kg/day, worsened the PCOS-like ovarian features and extended over
time the infertility status of the mice. This agrees with the observations that the ovarian
MyoIns/DCIns molar ratio is maintained around the value of 100:1 in healthy women but
drops to 0.2:1 in PCOS women [29] and that high levels of DCIns in the follicular fluid of
patients enrolled in an IVF program are harmful for oocyte and blastocyst quality [30,31].

With these premises and in light of the observation that DCIns reduces aromatase
expression in human granulosa cells [32], we hypothesized that, similarly to the effects
of the aromatase inhibitor letrozole, the administration of DCIns alone at high doses to
normal female mice would result in the production of an androgenic PCOS-like model or
other ovarian lesions.

We tested this hypothesis by administering DCIns to wild-type female mice for three
weeks, approximately corresponding to five ovulatory cycles, and analyzing the effects
on ovarian histology/function, serum testosterone levels and expression of the ovar-
ian enzyme aromatase. To this end, we employed three different DCIns formulations:
250 mg/kg/day, 500 mg/kg/day and 1000 mg/kg/day. These doses provide approximate
daily amounts of 5 mg, 10 mg and 20 mg DCIns/mouse, which are comparable to human
doses of 1200, 2400 and 4800 mg/day, respectively [33].

The lowest dose is in the range of 1000 to 1500 mg used in some therapeutic regimens
of PCOS patients [34,35]. Higher doses were employed to construct a dose response-curve
of possible DCIns toxicity.

The present paper describes histological and hormonal features observed in this study,
having particular relevance under a gynecological point of view. Effects of DCIns at a cellu-
lar and molecular level are still being investigated in our laboratories and will be reported
elsewhere. On the one hand, mice that received 250 mg/kg/day DCIns or 500 µg/kg/day
letrozole (positive controls) modeled a PCOS-like syndrome, with cystic ovaries, high
testosterone levels and low amounts of ovarian aromatase; on the other hand, mice that
received 500 mg/kg/day and 1000 mg/kg/day DCIns displayed histological ovarian
lesions resembling a menopausal state, with increased follicular/stromal cellularization
and loss of normal follicular structure, low testosterone levels and unaltered amounts of
ovarian aromatase.
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2. Results
2.1. Increase in Mouse Weights during the Treatment

During the 21-day treatment, the weights of DCIns 250-mice increased 2.73 ± 1.22%,
from 23.15 ± 2.8 g to 23.78 ± 2.96 g (mean ± SD), which was less than negative control
mice (8.0 ± 3.16%, from 21.02 ± 2.77 g to 22.70 ± 2.69 g) and letrozole-treated positive
control mice (10.33 ± 2.13%, from 19.48 ± 2.56 g to 21.46 ± 2.60 g). The weights of DCIns
500-treated mice and DCIns 1000-treated mice increased respectively by 6.40 ± 3.18%, from
19.64 ± 2.60 g to 20.86 ± 2.43 g, and 13.06 ± 6.53%, from 20.78 ± 2.98 g to 23.39 ± 2.54 g
(Figure 1). In the post-hoc Tukey HSD test, the weight increase of DCIns 250-treated mice
was different from those of negative controls or letrozole-treated mice (p < 0.05) and DCIns
1000-treated mice (p < 0.01).
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2.2. Assessment of Cycle Progression during the Treatment

Daily evaluations of the estrus cycle revealed a progression through all stages in the
negative control group; none of the mice arrested (0/5). On the contrary, the cycle was
arrested at day 8–10 during other treatments in 3/5 mice (DCIns 250), 3/5 mice (DCIns
500), 4/5 mice (DCIns 1000) and 4/5 mice (positive controls).

2.3. Gross Morphology of Uteri/Ovaries and Histology of Ovaries at the End of the Treatment

Inspected visually after the three week-treatment (Figure 2), uteri of control mice
(Figure 2A) displayed a proestrus/estrus-like aspect, typical of mature and cycling animals.
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Figure 2. Macroscopic view of mouse uterus-ovary complexes at the end of the 21 day-treatment.
Gross morphology of typical uteri and ovaries from mice that received, from left to right: (A) plain
water (negative control), (B) DCIns 250, (C) letrozole (positive control), (D) DCIns 500 and (E) DCIns
1000. Note the longer extension and thicker appearance of a typical uterus from control mice
(A) compared with the shorter and thinner appearance of the uteri from DCIns- and letrozole-
administered mice (B–E). All uteri are shown at the same scale (mm).
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Uteri of mice that had received either DCIns (Figure 2B,D,E) or letrozole (Figure 2C)
had an immature/metestrus-diestrus-like aspect, typical of non-cycling animals. Ovaries
from control mice displayed the presence of large follicles and some corpora albicantia,
products of recent ovulation. Ovaries of both DCIns- and letrozole-treated mice had a
smaller and immature size, but occasional presence of corpora albicantia was observed.

Histology of ovaries from negative control mice showed a normal presence of pri-
mary, secondary, tertiary follicles containing a growing oocyte, and of corpora lutea
(Figure 3A1,A2; Figure 4A,B).
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Figure 3. Ovarian histology of mice at the end of the 21 day-treatment. (A1,A2) Ovarian sections from mice that received
plain water (negative control), showing primary, secondary, and tertiary follicles as well as a corpus luteum (A1). These
features are typical of normally cycling mice. (B1,B2) Sections from mice subjected to 21-day treatment with DCIns 250,
showing primary, secondary, tertiary and cystic follicles devoid of oocytes. These features resemble typical signs of PCOS.
(C1,C2) Sections from mice subjected to 21-day treatment with letrozole (positive controls), showing paucity of follicles and
a large cyst, typically modeling human PCOS. (D1,D2) Sections from mice subjected to 21-day treatment with DCIns 500,
showing secondary and tertiary follicles as well as follicles with signs of hyperproliferation and extension of the stromal
compartment. (E1,E2) Sections from mice subjected to 21-day treatment with DCIns 1000, showing paucity of secondary
and tertiary follicles as well as large follicles with signs of hyperproliferation and extension of the stromal compartment.
Hematoxylin-eosin. Scale bars, 100 µm.

Ovaries from DCIns 250-treated mice had apparently normal primary and secondary
follicles but also cystic tertiary follicles, some of which contained an atretic oocyte, strongly
resembling those found in human polycystic ovaries (Figure 3B1,B2; Figure 4C). Ovaries
of letrozole-treated mice were similar but contained larger cystic follicles characterized
by the absence of the oocyte (Figure 3C1,C2; Figure 4D). In some cases, secondary and
tertiary follicles from these ovaries had a clearly atretic oocyte with cytosolic vacuolization,
suggesting the progression of an apoptotic process.

Ovaries from DCIns 500- and DCIns 1000-treated mice had some primary and sec-
ondary follicles, a very limited number of tertiary follicles, no follicles at more advanced
stages and no cystic follicles (Figure 3D1,D2; Figure 3E1,E2). These ovaries had large
follicles/areas with diffused, aberrant cell proliferation (Figure 4E). The typical structure of
the ovary was lost, especially under the DCIns 1000 dose, and the presence of follicles was
difficult to assess in many cases (Figure 4F). In some sections, the presence of oedema foci
was observed.
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was observed. 

2.4. Follicular Composition of Mouse Ovaries at the End of the Treatment 

Figure 4. Histological features of mouse ovaries at the end of the 21 day-treatment. (A,B) Ovarian
sections from mice that received plain water (negative control), showing a primary and a tertiary
follicle (A) and a corpus luteum (B). (C) A section from a DCIns 250-treated mouse with cysts.
(D) A section from a letrozole-treated mouse (positive control) with large cysts. (E) A section from a
DCIns 500-treated mouse with follicular hyperproliferation. (F) A section from a DCIns 1000-treated
mouse with stromal extension. Hematoxylin-eosin. Scale bars, 100 µm.

2.4. Follicular Composition of Mouse Ovaries at the End of the Treatment

Complete ovarian sections from all mice were used to calculate the number of devel-
oping follicles at each stage (Figure 5).

Negative control ovaries (A) displayed comparable numbers of primary, secondary
and tertiary follicles, and graafian follicles and corpora lutea were also present, although in
a smaller amount. Ovaries from DCIns 250- (B) and letrozole-treated mice (C) displayed
progressively decreasing numbers of growing follicles and presence of cystic follicles.
Corpora lutea were present in DCIns 250-ovaries but not letrozole-ovaries. At the DCIns
500 (D) and 1000 doses (E), ovaries displayed a similar decrease in small follicles, no
cystic follicles but larger follicles with evidence of cellular hyperproliferation and areas of
cellular necrosis.
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2.5. Theca/granulosa Cell Layer Measurements and Their Ratio

The DCIns 250 dose induced cystic follicles containing a hyperplastic layer of theca
cells and variable amounts of granulosa cells. Cystic follicles of letrozole-treated mouse
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ovaries also had a thin layer of somatic cells. Early tertiary follicles from ovaries of mice
under all experimental conditions were assayed for the extension/thickness of the theca
and granulosa cell layers (Figure 6) and to calculate their ratio (TGR) (Table 1).
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Table 1. Thickness of theca (TC) and granulosa cell (GC) layers in control, DCIns- and letrozole-
treated mice. Six representative early tertiary follicles from mice subjected to different experimental
treatments were measured using the ImageJ software. The TC/GC Ratio (TGR) (mean, SD) is
reported below.

H20 (−C) Letrozole (+C) DCIns 250 DCIns 500

TC GC TC GC TC GC TC GC

0.101 0.23 0.106 0.109 0.1 0.121 0.115 0.083

0.116 0.22 0.1 0.081 0.11 0.093 0.096 0.078

0.097 0.21 0.098 0.088 0.097 0.103 0.105 0.088

0.11 0.255 0.09 0.075 0.131 0.12 0.11 0.081

0.12 0.26 0.095 0.071 0.124 0.129 0.114 0.093

0.135 0.25 0.102 0.108 0.107 0.097 0.1 0.086

TGR

Mean 0.48 1.13 * 1.02 * 1.26 *, **

SD 0.05 0.15 0.13 0.09
Note. Values were then converted in µm according to a micrometer eyepiece: 0.1 unit = 9 µm. One Way ANOVA,
p < 0.001; * p < 0.01 versus H2O; ** p < 0.01 versus H2O; ** p < 0.05 versus DCIns 250.

As shown, the granulosa cell compartment of follicles typical of control mouse ovaries
had a thicker extension than the theca cell compartment, and the relative TGR value
(0.48 ± 0.05) was in the range of normality observed previously [16]. In contrast, the theca
cell compartment of ovarian follicles from DCIns 250-, DCIns 500- and letrozole-treated
mice was thicker than the granulosa cell one with TGR values of, respectively, 1.02 ± 0.13,
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1.26 ± 0.09 and 1.13 ± 0.15. Interestingly, the TGR of DCIns 250-treated mice was different
from that of DCIns 500-treated ones, suggesting a dose-dependent worsening effect of
DCIns. It was impossible to calculate a TGR of DCIns 1000-treated mice due the extreme
paucity of regular early tertiary follicles in their ovaries.

2.6. Testosterone Levels at the End of the Treatment

Under the DCIns 250 dose, levels of testosterone (1.42 ± 0.107 ng/mL) (mean ± SD)
increased above those typical of negative control mice (0.37 ± 0.11 ng/mL) (p < 0.05,
one-way ANOVA), similarly to those of letrozole-administered mice (1.29 ± 0.22 ng/mL).
Levels of testosterone in the serum of DCIns 500- and DCIns 1000-treated mice were similar
to or lower than those of negative control mice, being respectively 0.14 ± 011 and 0.27 ±
0.37 ng/mL.

2.7. Presence and Relative Amounts of Aromatase at the End of the Treatment

Presence of aromatase in the ovaries of treated and negative control mice was evalu-
ated by Western blot analysis and subsequent densitometry, normalized by comparison
with ubiquitous GAPDH (Figure 7).
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Figure 7. Levels of aromatase in the ovaries of mice at the end of the 21-day treatment. (A) Represen-
tative Western blot of aromatase in protein extracts from the ovaries of mice under the experimental
conditions indicated. (B) Densitometric analysis of aromatase/GAPDH. Values represent the mean
value ± SD of extracts from three independent experiments. *, difference vs. negative control mice,
p < 0.05.

From a qualitative point of view, a single band of approximately 55 kDa molecular
mass was detected in protein extracts from control mouse ovaries, as already reported [36].
A band of similar size was detected after all treatments, but additional bands were detected,
as follows: protein extracts from DCIns 250-treated mice contained a band of smaller
size (approximately 52 kDa), those from letrozole-treated mice had a band of closely
smaller size (approximately 54 kDa), and extracts from DCIns 500- and DCIns 1000-treated
mice had a band of much smaller size (approximately 50 kDa). Induction of different
aromatase isoforms by various treatments in mouse ovarian cells appears reasonable in
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light of the observation that the control of aromatase expression in humans involves a
complex mechanism of different promoter and downstream exons [37]. Densitometric
measurements of the amounts of aromatase bands relative to GAPDH, showed a reduction
in DCIns 250-ovaries (0.16 ± 0.02 relative units, RU) (mean ± SD) from those of negative
control-ovaries (0.34 ± 0.03 RU) (p < 0.05); on the contrary, an increase was observed in
letrozole-ovaries (0.56 ± 0.06 RU) (p < 0.05). No variations in the amounts of aromatase were
observed in DCIns 500-ovaries (0.45 ± 0.07 RU) and DCIns 1000-ovaries (0.40 ± 0.08 RU)
from either negative control- or letrozole-ovaries.

3. Discussion
3.1. Effects of the Administration of DCIns 250 and Letrozole

Under the 5 mg/day DCIns dose employed, mice developed distinct morphological
features of human PCOS, similar to those observed in mice that received 10 µg/day
letrozole, an inducer of androgenic PCOS models [12,38]. Their uterus had the macroscopic
aspect typical of non-cycling animals, in agreement with the cycle arrest observed in
3/5 mice and suggestive of an impairment of gonadal steroidogenic activity.

Compared with negative control mouse ovaries, those of DCIns 250-treated mice and
of letrozole-treated mice had progressively decreasing numbers of follicles at the primary,
secondary, tertiary stages and corpora lutea, absence of Graafian follicles and presence
of cystic follicles. The TGR of follicles of DCIns 250- and letrozole-treated mice was also
similar to that typical of PCOS mouse follicles [16], confirming an extension of the theca
cell compartment and a reduction of the granulosa cell one. The androgenic phenotype
observed with these treatments was confirmed by measurements of blood testosterone
levels of the mice, which were increased several-fold with respect to those of negative con-
trol mice. Either an overproduction of androgens in the extended theca cell compartments
and/or a specific decrease in aromatase activity is probably responsible for this increase.
Additionally, it may depend on the reduced granulosa cell compartment measured under
these conditions. The observed increase in blood testosterone was associated with a de-
crease in expression of aromatase in the ovary of DCIns 250-treated mice. This finding
represents the first evidence of a specific down modulation of aromatase by DCIns in an
in vivo system and agrees with similar observations on in vitro cultured human granulosa
cells [32]. In contrast, a similar rise in blood testosterone observed in letrozole-treated mice
was associated with increased ovarian aromatase expression. This apparently paradoxical
observation is in accordance with the existence of a letrozole-induced positive regulatory
feedback [13] that involves high levels of circulating testosterone and elevated expression
of FSH receptors and aromatase.

In summary, 250 mg/kg/day DCIns for 21 days gave a murine model with major
ovarian and hormonal features of human PCOS.

Finally, DCIns 250-treated mice displayed a significantly decrease in body weight
gain with respect to other conditioned mice, including positive and negative controls, as
observed in other PCOS mouse models [16,39]. The reduced weight gain of these mice
could not be attributed to the lipolytic effects of increased androgen levels, considering
the increased weight gain observed in letrozole-treated mice, but suggests the existence
of a specific metabolic effect(s) of the DCIns 250 dose, possibly acting by reduction of
food intake, as shown by Jeon and coworkers [40]. Whether this is due to an abnormal
interaction with the synthesis of appetite-signaling peptides deserves further investigation.

These results may be interpreted by considering the specific biochemical actions of
inositols in the ovary. Body fluids, organs and tissues maintain specific molar ratios in
the content of MyoIns and DCIns [41], mostly by the tissue-specific, insulin-dependent
activity of the enzyme epimerase. This enzyme irreversibly converts MyoIns into DCIns,
according to the functions and specific metabolic requirements of the cell types. Since My-
oIns increases cellular glucose uptake, while DCIns is crucial for glycogen synthesis [42],
glycogen-storage organs/tissues, such as muscle, fat, and liver, require high levels of
DCIns; in contrast, organs displaying high glycolytic activity, such as brain, heart, and
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ovary, contain very low levels of DCIns [19,43–45]. PCOS ovaries, having an inverted My-
oIns/DCIns ratio due to epimerase hyperactivation [45], confirm the ovarian requirement
of high amounts of MyoIns and low amounts of DCIns. In fact, MyoIns concentration in
the mammalian female reproductive tracts is substantially higher than in plasma [46] and a
deficiency of MyoIns is known to impair oocyte and embryo quality [47]. On the contrary,
supplementation of MyoIns to in vitro cultured mouse oocytes and embryos enhances
their ability to complete preimplantation development [47,48] and to develop to term
normally [49]. MyoIns (such as inositol trisphosphate, IP3) is one of the second messengers
of FSH in the ovary [50], relevant for granulosa cell function and folliculogenesis. For
where oocytes are concerned, MyoIns-derived IP3 modulates intracellular Ca2+ effluxes in
response to LH and FSH [51,52] and plays a key role in meiotic maturation [53]. Therefore,
as predicted several years ago [54], high doses of MyoIns can be administered to PCOS
patients with positive effects on ovarian and oocyte/embryo functions.

High doses of DCIns, on the contrary, affect ovarian functions negatively and worsen
PCOS symptoms. As a matter of fact, the only known roles of DCIns are to participate
in insulin signal transduction downstream of the insulin receptor and, in the ovary, to
stimulate testosterone synthesis initiating steroidogenesis in theca cells [55] and, as shown
here, to downregulate aromatase, reducing the conversion of androgens into estrogens.
Therefore, while at the systemic level, high doses of DCIns improve insulin activity, reduc-
ing its levels and counteracting insulin resistance, at the ovarian level they cause a switch
to an androgenic phenotype and the consequent impairment in folliculogenesis and overall
function [19,30]. The existence of additional abnormal pathways induced by an excess of
ovarian DCIns warrants further investigation.

These results deserve particular attention since, although being in apparent contrast
with a positive outcome of the therapy for human PCOS with a comparable dose of
DCIns (1200 mg/day), they support the general conclusion of clinical trials that, although
describing positive results only on metabolic parameters, doubt remains on the effects on
ovarian function [34,55].

3.2. Effects of the Administration of DCIns 500 and DCIns 1000

Under the DCIns doses of 10 mg/day and 20 mg/day, corresponding to 2400 mg/day
and 4800 mg/day in humans, mice had macroscopic uteri typical of non-cycling mice, and
a cycle arrest detected in 3/5 and 4/5 mice, respectively, suggesting an impairment in
gonadal steroidogenic activity by these treatments as well.

Ovarian histology of these mice, however, showed substantial differences. In partic-
ular, large areas of ovarian sections were occupied by diffuse cell populations, probably
induced by active and aberrant proliferation, in both the stroma and abnormally expanded
follicles. In several cases, these follicles, here named “hyperproliferative”, displayed signs
of necrosis, suggesting the failure of metabolic processes.

Ovaries of DCIns 500- and DCIns 1000-treated mice resembled those from aged
mice [56,57], or mice experimentally induced to a menopausal state [58], with paucity
or absence of follicles and presence of signs of general cell proliferation. Some of their
features also resemble ovarian abnormalities in a pathological model of ovarian lesions
induced in rats by administration of raloxifene, a selective estrogen receptor modulator,
for 6 months [59]. These include, among others, a dramatic decrease in the number
of developing follicles and corpora lutea, presence of anovulatory follicles with atretic
oocytes, lack of corpora lutea, hyperplasia of granulosa cells, ovarian atrophy and failure
in ovulation.

The disruption of the ovarian organization was associated with minimal levels of
testosterone measured in the serum of DCIns 500- and DCIns1000-treated mice, similar to
or lower than negative control mice. Since the ovarian content of aromatase under both
experimental conditions was similar to that of negative control mice, we hypothesize that
these treatments block normal hormonal pathways inside the ovary, probably by inhibiting
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expression/activity of the steroidogenic enzyme cytochrome P450scc that catalyzes the
initial step in steroidogenesis.

4. Materials and Methods
4.1. Animals

Twenty-five 30-day-old inbred C57BL/6N female mice (Charles River Italia, Calco,
VA, Italy), housed in a temperature-controlled facility (22 ± 1 ◦C) on a 12/12 h light/dark
cycle, inside standard cages with unlimited access to food and water, were used for all
experimental treatments. All efforts were made to minimize animal suffering, according
to the European directive 2010/63/EU and the Italian law DL 26/2014 on the protection
of animals used for scientific purposes. Protocols were approved by the University of
L’Aquila Organism for Animal Welfare (OPBA) and by the Italian Ministry of Public Health
with authorization n. 269/2018-PR (April 9th, 2018) to Carla Tatone.

4.2. Administration of DCIns or Letrozole

To evaluate the effects of DCIns or letrozole, mice were randomly divided into five
cages with five animals per cage. Each cage was provided with a bottle of water containing
5 mg/2 mL or 10 mg/2 mL or 20 mg/2 mL DCIns, 2 mL being the average volume of water
drunk by a single 20 g mouse per day, previously recorded [16]. Positive control mice re-
ceived 10 µg/2 mL letrozole (Sandoz Italia, Origgio, Italy), corresponding to 0.5 mg/kg [12].
Negative control mice received plain drinking water. All mice were kept under free feeding
and drinking conditions for 21 days with bottle replacements every two to three days and
weighed weekly during the treatment.

4.3. Vaginal Smears

Starting from the second week of treatment, all mice were subjected to daily evalu-
ation of the progression of their estrus cycles by a direct, “wet smear” technique [10,60].
Vaginal cells were collected via saline lavage with a plastic pipette filled with 10 µL
phosphate-buffered saline (PBS), and observed without staining under a light transmission
microscope (Leica DMLB, Leica Microsystems GmbH, Wetzlar, Germany), with a 10× ob-
jective. Predominant nucleated epithelial cells and some cornified epithelial cells indicated
the proestrus stage; predominant cornified squamous epithelial cells indicated the estrus
stage; cornified squamous epithelial cells and leukocytes indicated the metestrus stage;
predominant leukocytes indicated the diestrus stage.

4.4. Blood and Organ Collection

At the end of the treatment, all mice were sacrificed by an inhalant overdose of carbon
dioxide (CO2, 10–30%), followed by cervical dislocation for histological and biochemi-
cal analyses.

For each mouse, the blood was rapidly drawn from the heart and prepared for testos-
terone assay; the uterus and ovaries were excised and photographed; one ovary was
processed for histological analysis, the other ovary was frozen in a mixture of dry ice/70%
ethanol for biochemical analyses.

4.5. Histological Analysis

Ovarian histology was performed as described [16]. Organs were thawed, fixed in
4% paraformaldehyde at 4 ◦C overnight, washed in PBS, dehydrated in 30% sucrose and
embedded in paraffin. Five or 10 µm thick sections were mounted on gelatinized slides,
stained with hematoxylin-eosin (H&E), cover-slipped with Eukitt® and observed under
the Leica DMLB microscope. The number of primary, secondary and tertiary follicles in
complete ovarian sections from three animals per treatment were recorded for statistical
analysis. The thickness of theca cell and of granulosa cell layers of early tertiary follicles
from various sections was measured using the ImageJ software (ImageJ 1.47v, Wayne
Rasband, National Institutes of Health; Washington, DC, USA).
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4.6. Serum Testosterone Assay

Serum from each mouse was obtained by allowing 100 µL blood to clot for 1 h at room
temperature (RT) and then centrifuging the sample for 10 min at 1500 g at 4 ◦C. Testosterone
serum concentrations were measured using a mouse ELISA assay (Intra-Assay: CV < 8%,
Inter-Assay: CV < 10%; FineTest, Wuhan, China).

4.7. Western Blot Analysis of Ovarian Aromatase

For protein extraction, one ovary from each mouse, freed of adipose tissue and blood,
was homogenized in RIPA lysis buffer [61] containing protease and phosphatase inhibitors
(Sigma–Aldrich, Milano, Italia), by repeated freezing/thawing cycles in liquid nitrogen
and centrifuged at 10,000× g for 30 min a 4 ◦C. Soluble protein concentration in the
supernatant was determined by BCA protein assay kit (Pierce, Rockford, IL, USA). Twenty
micrograms of protein from each sample was separated by SDS-PAGE and transferred
to a polyvinylidene difluoride membrane (Sigma-Aldrich, St. Louis, MO, USA). Non-
specific binding sites were blocked for 1 h at RT with 5% BSA in Tris-buffered saline
containing 0.05% Tween 20 (TBS-T). Identification of aromatase, and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) as the internal standard, was performed by membrane
incubation with polyclonal rabbit anti-aromatase (PA1-21398, Thermo Fisher Scientific,
Waltham, MA, USA; 1:500) and mouse anti-GAPDH (TA802519, OriGene Technologies Inc.,
1:750) antibodies, overnight at 4 ◦C, followed by incubation with horseradish peroxidase
(HRP) conjugated anti-rabbit (7074S, Cell Signaling Technologies, Danvers, MA, USA)
1:5000) or anti-mouse secondary antibody (Ab6728, Abcam, 1:5000), respectively, for 1 h
at RT. After washing in TBS-T, specific immunoreactive complexes were detected by ECL
kit (Thermo Fisher Scientific) and Uvitec Cambridge system (Alliance series, Cambridge,
UK). Bands were normalized for GAPDH using ImageJ 1.47v software. Experiments were
performed in triplicate.

4.8. Chemicals

Where not stated otherwise, chemicals were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). DCIns (96.53%) was provided by Amicogen Inc. (Jinju-si, Korea).

4.9. Statistical Analysis

Data were analyzed by one-way or repeated measures analysis of variance (ANOVA).
Post-hoc analyses were performed by the Tukey Honestly Significant Differences test.
Statistical analyses were performed using R: A language and environment for statistical
computing (R development core team, R foundation for statistical computing, ISBN 3–
900051-07-0, 2008, Vienna, Austria).

5. Conclusions

The overall results may be summarized as follows:

1. Exposure of mice to 5 mg/day DCIns for 21 days represents a novel procedure to
obtain a useful experimental model of PCOS.

2. Exposure of mice to higher daily amounts of DCIns for 21 days is toxic for ovarian
histology and function, producing lesions different from those typical of PCOS but
resembling a pre-menopausal/menopausal state.

3. Serum testosterone levels are affected by administration of DCIns and letrozole. They
are increased by 5 mg/day DCIns, but strongly decreased by higher DCIns amounts,
probably due to a blockade in steroidogenesis produced by these doses.

4. The amounts of ovarian aromatase are affected by administration of both 5 mg/day
DCIns and letrozole but in opposite direction: DCIns downregulates and letrozole
upregulates aromatase expression, confirming previous observations. Higher DCIns
doses do not affect the amount of ovarian aromatase.

Although recognizing species-specific differences between mice and humans, the
present conclusions deserve attention for clinical practice. In fact, when administered for a
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prolonged time, human treatments with DCIns doses of 1200 mg/day or higher should be
carefully evaluated for their possibly detrimental impact on ovarian physiology.

This study has several strengths related to the use of a quickly achievable animal
model representative of the physio-pathological processes evaluated. We recognize one
main weakness, consisting in the lack of data on serum levels of estrogens and other
gonadal steroids, due to the paucity of blood that can be drawn by a single 20 to 30 g mouse
for the type of hormonal assay employed.

Ongoing experiments in our laboratory are extending these observations, taking into
consideration molecular and cellular aspects of ovarian abnormalities and a complete
evaluation of hormonal parameters.
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