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Abstract: The presence of abnormal ovarian ratios of myo-inositol (MI) to D-chiro-inositol (DCI) is
a recurrent feature in PCOS. Available evidence suggests that MI and DCI may modulate steroid
biosynthesis, likely in an opposite manner. Specifically, MI seems to induce estrogen production,
while DCI has a role in the synthesis of androgens. Elevated insulin levels, generally associated with
PCOS, alter the physiological MI/DCI ratio, increasing MI-to-DCI conversion through activation of a
specific epimerase enzyme. DCI directly increases testosterone biosynthesis in thecal cells and reduces
its conversion to estradiol by downregulating aromatase enzyme in granulosa cells. This manuscript
reviews the literature that supports the connection between altered MI/DCI ratios and pathological
steroidogenesis observed in PCOS women. Furthermore, it discusses the application of inositol-based
treatment protocols in managing PCOS symptoms and improving the quality of patients’ life.
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1. Introduction

Polycystic Ovary Syndrome (PCOS) is a complex endocrine condition affecting 15-20% of women
in the reproductive age [1].

The Rotterdam workshop consensus [2] established the diagnostic criteria for PCOS. Accordingly,
the diagnosis is based on a combination of at least two of the following three clinical features:
hyperandrogenism (clinical and/or biochemical), chronic oligo-anovulation, and polycystic ovaries at
ultrasound examination.

A typical PCOS phenotype is characterized by hyperandrogenism and ovarian dysfunctions;
however, other frequent abnormalities, usually not included among the canonical diagnostic criteria,
may be present [3]. In particular, insulin resistance, with compensatory hyperinsulinemia, is frequently
detected in several PCOS women [4].

This metabolic abnormality is present in a large proportion of overweight and obese women,
but exaggerated circulating insulin levels and reduced insulin-mediated glucose metabolism were also
observed in up to 40% of non-obese PCOS women [5].

Certainly, insulin is highly involved in PCOS pathogenesis, either directly or indirectly.
Insulin directly prompts ovarian theca cells to enhance the synthesis and the release of androgens;
in fact, elevated circulating androgen levels have been observed in 80–90% of PCOS women with
oligomenorrhea [6]. Moreover, in a subgroup of PCOS women, increased insulin triggers LH receptor
expression on granulosa cells of a subpopulation of small follicles, leading to premature terminal
differentiation and arrest of follicular growth that may lead to anovulation [7].
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In addition, high glucose concentration inhibits the hepatic synthesis of sex hormone-binding
globulin (SHBG), with a consequent increase of bioavailable circulating free-androgens [8,9].

The ascertained effectiveness of insulin-sensitizing drugs, such as metformin and thiazolidinediones,
in improving ovulatory function and reducing androgen excess in PCOS patients provided additional
evidence that supports the pathogenic role of insulin resistance in PCOS [10]. However, patients’
compliance often suffers from side effects such as nausea and diarrhea for metformin, and increased
body weight for pioglitazone. Therefore, novel effective therapeutic options, free of side effects,
are highly desirable.

2. The Rationale of the Use of Inositol for PCOS Treatment

During the last decades, compelling evidence confirmed inositol supplementation as a pivotal
and well tolerated integrative treatment for PCOS-affected women [11,12].

Inositols are cyclic polyols (C6H12O6) present in all living beings, where they participate to
several metabolic pathways. Among the natural stereoisomers, myo-inositol (MI) is prevalent in
animals [13], as natural constituent of their diet [14,15]. In humans, a number of organs (kidneys, liver,
testes, mammary gland and brain) actively synthesize MI, isomerizing glucose-6-phosphate (G6P)
to inositol-3-phosphate (Ins3P) [16]. Then, inositol monophosphatase-1 (IMPA-1 or IMPase)
dephosphorylates Ins3P to free MI [17]. Free inositol can also be obtained by dephosphorylation of
inositol-1,4,5-trisphosphate (InsP3) and inositol-bisphosphate (InsP2).

Under insulin stimulation, a specific Nicotinamide Adenine Dinucleotide (NAD)-NADH-dependent
epimerase unidirectionally converts MI to d-chiro-inositol (DCI) another notable stereoisomer [18,19]
according to tissue requirement.

While for most tissues the intracellular pool of inositol is almost exclusively (>99%) constituted by
MI, the content of MI and DCI is significantly different in fat, muscle and liver, reflecting the distinct
functions of the two isomers in those tissues [20].

Inositols participate in insulin signaling. Indeed, insulin needs the presence of both MI and
DCI to exert its activity [21]. These two stereoisomers, as inositolphosphoglycans (MI-IPG and
DCI-IPG), take part in the intracellular processes that control the oxidative and non-oxidative
metabolism of glucose, as well as the uptake of glucose from the extracellular environment [14,15,22–24].
Supplementation with both MI and DCI may exert an insulin-sensitizing effect and lead to reduced
insulin levels in the blood of resistant patients [25].

MI mainly controls cellular glucose uptake, and its content is significantly high in tissues with
high-glucose utilization, namely the brain, the heart and the ovaries [21,24–26]. Insulin signal activates
glucose transporters through the inositol pathway, allowing glucose to enter the cells. Moreover,
dietary MI significantly prevents glucose absorption from duodenal tract and decreases glucose rise
in the blood, by interfering with glucose intestinal uptake [27]. Furthermore, MI improves insulin
sensitivity in adipocytes by increasing lipid storage and glucose uptake, and by inhibiting lipolysis [28].

A chief MI metabolite, -InsP3-, acts as second messenger of follicle stimulating hormone (FSH) in
the granulosa cells of the ovaries [29], representing a key mediator for the selection of the dominant
follicle [30]. In agreement with this physiological role, MI probably enhances serum levels of
anti-Müllerian hormone (AMH), since AMH in women is produced by granulosa cells under FSH
stimulation [31]. Also, in mouse models, it has been observed that MI induces the meiotic progression of
oocytes into fertilization-competent eggs, whereas its reduction within the ovaries impairs physiological
oocyte maturation [32].

DCI concentration is higher in tissues that store glucose as glycogen, such as liver and muscle [33].
At the ovarian level, DCI mediates insulin-induced testosterone biosynthesis from thecal cells [34],

while it acts directly on steroidogenic enzymes gene regulation in granulosa cells, reducing mRNA
expression of both aromatase CYP19A1 and cytochrome P450 side-chain cleavage (P450scc) genes in a
dose-response manner [35].
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Despite their chemical similarities MI and DCI in most cases exert different functions, and we could
speculate that MI can affect aromatase activity in an opposite manner with respect to DCI. However
experimental data in this regard are unavailable at the moment. In this perspective, higher MI/DCI
ratios should increase the activity of aromatase in granulosa, inducing estrogen biosynthesis, meanwhile
lower MI/DCI ratios stimulate androgen production in thecal cells [36]. Such hypothesis is based on
the role played by MI (in the form of InsP3) as second messenger of FSH which is regarded as the
major inducer of aromatase activity in granulosa cells [37].

For its modulatory activity on aromatase, DCI supplementation produces a systemic increase in
testosterone levels, leading to a concomitant reduction of estrogens, effect increased by the direct action
of DCI on testosterone synthesis in theca cells. Understandably, high levels of this isomer can exert
harmful effects on oocyte quality [38,39]. On the contrary, MI reaches concentrations in the mammalian
female reproductive tract significantly higher than those reported in blood serum, suggesting that it
plays specific roles in the ovaries by ensuring correct oocyte maturation and transport through the
oviducts [40,41].

3. MI to DCI Ratio Imbalance in PCOS

The presence of a specific ovarian epimerase that converts MI into DCI, indicates that both are
essential for ovarian physiology and that DCI concentration is tightly regulated.

Indeed, epimerase activity is tissue specific [20], with different MI/DCI ratios in different tissues
and organs. For example, the ratio is around 20:1 in the thecal cells [18] and very close to 100:1 in the
follicular fluid [42].

In pathologic conditions, such as type 2 diabetes, decreased insulin sensitivity in many tissues leads
to reduced epimerase activity and, consequently, lower DCI production [20,43]. Unlike most tissues,
the ovaries maintain the normal insulin sensitivity, despite the presence of systemic resistance. In fact,
the ovaries never become insulin resistant [31,42], and as a consequence, systemic hyperinsulinemia
overstimulates epimerase activity in those tissues, causing excessive DCI synthesis at the expense of
MI concentration.

Increased DCI concentration promotes androgen synthesis, while depletion of MI worsens the
energy state of the oocytes, leading to impaired FSH signaling and oocyte quality. Altered ovarian
MI/DCI ratios may explain the pathogenesis of PCOS in insulin resistant patients.

Evidence in support of such theory was provided by two independent studies. The first, published
by Larner’s research group, analyzed the epimerase activity and the content of MI and DCI in PCOS
theca cells [18]. The second, by Unfer et al., investigated the concentration of MI and DCI in the
follicular fluid of healthy women and those with PCOS [42].

Both studies obtained comparable results, namely, the ovaries of healthy women presented higher
concentrations of MI and lower concentrations of DCI; whereas, the ovary of PCOS patients showed a
marked MI depletion and an increased DCI content.

4. Inositol-Based PCOS Managing: The 40:1 MI/DCI Formula

Nestler et al. in 1999 [44] observed that in obese PCOS women 1200 mg/day of DCI reduced
serum testosterone level and improved ovulation rate as well as metabolic parameters, such as blood
pressure and triglycerides. A further study, involving a larger number of patients and increasing the
DCI dosage up to 2400 mg/day [45], was unable to confirm the results published previously. With the
higher dose of DCI testosterone levels failed to decrease.

The ovarian paradox may help to understand why a supplementation with DCI alone cannot
be considered a reliable approach to manage PCOS. Hence, supplementing DCI alone is not a
recommendable choice for several reasons: (1) high doses of DCI have been considered toxic to ovaries
and oocyte maturation; (2) DCI is not converted into MI, and thus the specific action exerted by MI
would be lost; (3) MI and MI-IPG deficiencies are correlated with many insulin resistance conditions.
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Classical insulin sensitizers ameliorate the metabolic and reproductive PCOS features, but side
effects often lead to poor compliance. Scientific evidence demonstrated that also MI is effective in
managing PCOS symptoms, and a recent meta-analysis compared the short-term effects of metformin
and MI in PCOS affected women [46].

The authors demonstrated that in these patients there is no difference in the short-term effect
of metformin vs MI regarding fasting insulin, Homeostasis Model Assessment (HOMA) index,
testosterone, androstenedione and Sex Hormone Binding Globulin (SHBG). However, a statistically
significant heterogeneity was observed for HOMA, SHBG and BMI changes. The meta-analysis
confirmed that MI is associated with a lower risk of adverse events in comparison to metformin,
and for this reason its use could be safer or possible also in association with lower levels of metformin
in subjects that do not tolerate higher therapeutic dose of this insulin sensitizer.

The most relevant clinical results have been obtained with the combination of MI and DCI in the
40:1 ratio, which is similar to the ratio found in the plasma of healthy women [47].

Another recent meta-analysis [48] examined 9 randomized controlled trials (RCTs) on PCOS
women (247 cases and 249 controls) [49–56]. The authors evaluated the efficacy of supplementing
MI alone, or in association with DCI in the 40:1 ratio, considering fasting insulin concentrations as
the primary outcome, while HOMA index and serum levels of testosterone, androstenedione and sex
hormone-binding globulin (SHBG) as secondary. The authors reported that inositol supplementation
significantly reduced fasting insulin and HOMA index, with a slight trend towards testosterone
decrease with respect to controls. Moreover, a significant increase in SHBG levels was observed after
MI administration.

These results were further confirmed by a systematic review and meta-analysis [57], including 10
RCTs involving a total of 573 patients. Total testosterone, estradiol (E2), and HOMA index were the
primary endpoints. Compared with the control group, inositol administration significantly improved
HOMA index and raised E2 levels, showing only a trend in reducing total testosterone levels.

The first clinical study comparing the results obtained from PCOS patients after the administration
of different MI/DCI ratios (0:1; 1:3.5; 2.5:1; 5:1; 20:1; 40:1 and 80:1) was reported by Nordio and
colleagues [58]. As primary outcome, the authors investigated the ovulation by means of progesterone
assay, while as secondary outcomes they observed the improvement of the following metabolic
parameters: FSH, LH, SHBG, E2, free testosterone, HOMA index, basal and postprandial insulin.

From all the ratios tested, the 40:1 yielded the best improvements, followed by the 20:1 and 80:1;
instead, the other combinations showed less relevant outcomes [58].

These clinical findings perfectly agree with the results obtained by Bevilacqua et al. using a mouse
model of PCOS [59]. The authors induced the syndrome by exposing 30-days-old females to 10 weeks
of continuous light. They observed that the ovaries of these mice showed lack of tertiary follicles and
corpora lutea, altered ovarian architecture, and increased thickness of the theca layer. PCOS signs
and symptoms completely disappeared with daily supplementation of 420 mg/kg MI/DCI in a 40:1
ratio, in a more effective way than the other ratios examined. Moreover, the 40:1 formula restored the
low theca/granulosa cell layer thickness values, leading to a faster recovery of murine fertility, with a
physiological delivery time after mating.

The other tested MI/DCI ratios were less effective or even exerted negative effects on the clinical
conditions. In particular, the formula with higher DCI content demonstrated to worsen PCOS
pathological features.

Overall, both these studies support the 40:1 MI/DCI ratio as the best treatment for PCOS patients,
with the aim of restoring ovulation.

5. Overcoming “Inositol-Resistance”

In 30–40% of PCOS women, inositol supplementation fails to improve metabolic and hormonal
parameters, or to restore ovulation [52,60–62]. These patients are defined “inositol-resistant”,
and “inositol-resistance” refers to the therapeutic inefficacy of inositols.
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It has been hypothesized that the poor or absent absorption of inositol may be responsible for the
lack of therapeutic effects. Several conditions, such as obesity, chronic intestinal diseases, dysbiosis etc.
are candidate to represent risk factors for developing inositol-resistance.

Since alpha-lactalbumin (alpha-LA) can enhance the passage through biological barriers,
combining MI with this whey protein revealed to be an effective strategy to overcome inositol
resistance. Importantly, alpha-LA and inositols are both included in the FDA list of Generally
recognized as safe (GRAS) compounds (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm?fr=184.1370).

Monastra and colleagues firstly demonstrated, both in vivo and in vitro, that concomitant
administration of alpha-LA ameliorated the absorption and the bioavailability of MI [63]. Indeed,
the simultaneous oral administration of MI and alpha-LA led to a significantly higher plasma
concentration of MI with respect to MI supplemented alone. Moreover, the authors observed an
increased passage of MI in the presence of alpha-LA and a concomitant lowering of the Trans-Epithelial
Electrical Resistance, indicative of the opening of the tight junctions between the Caco-2 cells, used as
an in vitro model of intestinal mucosa epithelial monolayer [63].

A subsequent open and prospective study on PCOS patients treated with MI and alpha-LA
clinically confirmed the efficacy of this new formulation [64]. In the first part of the study, following
treatment with the sole MI, 23 out of 37 women (62%) ovulated, while 14 (38%) demonstrated to be
“resistant” and did not ovulate. In a second step, these MI-resistant patients were supplemented with
MI plus alpha-LA. Following the combined treatment, 12 (86%) patients ovulated. Moreover, their MI
plasma levels were found to be significantly higher than the baseline. Improved hormone and lipid
profiles were also recorded [64].

6. Conclusions

Inositols differently modulate the steroid biosynthesis in the ovaries: in particular, MI is likely to
induce estrogen production, while DCI has a role in the synthesis of androgens (Figure 1).

Figure 1. Schematic representation of how inositols affect estrogen biosynthesis in granulosa cells of
healthy and PCOS women. Testosterone in granulosa cells comes from thecal biosynthesis, which is
stimulated by insulin through DCI second messenger. In healthy women MI stimulates aromatase
to produce estrogens; while DCI, obtained from insulin-dependent MI conversion by epimerase, has
the opposite effect. In PCOS women hyperinsulinemia forces the epimerase to convert MI to DCI.
This isomer has a modulating effect on aromatase, leading to a systemic increase in testosterone levels
and a concomitant reduction of estrogens. A combination of MI and DCI in the 40:1 ratio seems to be
the most effective to ameliorate PCOS parameters.

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1370
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1370
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In PCOS women, the connection between increased ovarian MI-to-DCI conversion and pathological
steroidogenesis is often observed (Figure 1).

While supplementation with DCI may potentially induce detrimental effects on ovarian physiology,
especially in PCOS women, supplementation with MI and DCI in the proper ratio (40:1) seems to
represent an effective treatment for restoring ovulation in PCOS patients (Figure 1).

Moreover, since poor MI absorption in the gut may lead to therapy failure, as observed in a fraction
of PCOS patients treated with inositols, the association of MI with alpha-LA allows to overcome
the “inositol-resistance” and to increase the number of women who respond to MI supplementation.
All these reports fruitfully enrich and enlarge the promising field of inositol studies related to PCOS,
even though a validation of the concept of MI/DCI ratio and the potential role of alpha-LA with more
robust studies is recommendable.
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